首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125879篇
  免费   8932篇
  国内免费   5895篇
化学   58681篇
晶体学   1382篇
力学   9466篇
综合类   328篇
数学   37355篇
物理学   33494篇
  2024年   46篇
  2023年   1074篇
  2022年   1248篇
  2021年   1807篇
  2020年   2230篇
  2019年   2100篇
  2018年   11756篇
  2017年   11556篇
  2016年   8328篇
  2015年   3310篇
  2014年   3260篇
  2013年   4106篇
  2012年   8380篇
  2011年   14953篇
  2010年   8761篇
  2009年   8939篇
  2008年   9723篇
  2007年   11477篇
  2006年   2848篇
  2005年   3530篇
  2004年   3218篇
  2003年   3312篇
  2002年   2188篇
  2001年   1198篇
  2000年   1115篇
  1999年   1151篇
  1998年   1010篇
  1997年   914篇
  1996年   944篇
  1995年   828篇
  1994年   680篇
  1993年   606篇
  1992年   476篇
  1991年   450篇
  1990年   374篇
  1989年   296篇
  1988年   235篇
  1987年   218篇
  1986年   215篇
  1985年   184篇
  1984年   128篇
  1983年   128篇
  1982年   94篇
  1981年   77篇
  1980年   75篇
  1979年   62篇
  1978年   42篇
  1973年   41篇
  1914年   45篇
  1909年   41篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Ocotillol, pseudo-ginsenoside RT5 (RT5), and pseudo-ginsenoside F11 (PF11) are ocotillol-type saponins that have the same aglycone structure but with different numbers of glucose at the C-6 position. In this study, the metabolites of ocotillol, RT5, and PF11 in rat plasma, stomach, intestine, urine, and feces after oral administration were investigated by ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry. The results showed that RT5 was easily biotransformed into metabolites in vivo, whereas PF11 and RT5 were difficult to be biotransformed. Hydrogenation, dehydrogenation, dehydration, deglycosylation, deoxygenation, hydration, phosphorylation, deoxidation, glucuronidation, and reactions combining amino acid were speculated to be involved in the biotransformation of ocotillol, RT5, and PF11. Based on the structural analysis of metabolites, it was deduced that hydrogenation, dehydration, deoxidation, and reactions combining amino acid occurred on the aglycone structure, whereas deglycosylation, hydration, and phosphorylation occurred on the glycosyl chain. Further, metabolites in plasma, urine, feces, and tissues were different: First, glucuronidation products were found in urine, stomach, intestine, and feces, but not in plasma. Second, the ocotillol prototype was not identified in urine samples. Third, the RT5 prototype was found in stomach, intestine, feces, and urine, but not in plasma.  相似文献   
102.
Because of its unpredictable side effects and efficacy, the anticancer drug docetaxel (DTX) requires improved characterisation of its pharmacokinetic profiles through population pharmacokinetic studies. A sensitive and rugged LC–MS/MS method for the detection of DTX in human plasma was developed and optimised using paclitaxel as an internal standard (IS). The plasma samples underwent rapid extraction using hybrid solid-phase extraction-protein precipitation. The analyte and IS were separated with an isocratic system on a Zorbax Eclipse Plus C18 column using water containing 0.05% acetic acid along with 20 μM of sodium acetate and methanol (30/70, v/v) as the mobile phase. Quantification was performed using a triple quadrupole mass spectrometer through multiple reaction monitoring in positive mode, using the m/z 830.3 → 548.8 and m/z 876.3 → 307.7 transitions for DTX and paclitaxel, respectively. The range of the calibration curve was 1–500 ng/mL for DTX, and the linear correlation coefficient was >0.99. The accuracies ranged from −4.6 to 4.2%, and the precision was no higher than 7.0% for the analytes. No significant matrix effect was observed. Both DTX and the IS showed considerable recovery. This method was finally applied to the establishment of a population pharmacokinetic model to optimise the clinical use of DTX.  相似文献   
103.
Our previous work demonstrated that total withanolides of Datura metel L. leaves (TWD) exhibited excellent therapeutic effects on psoriasis. However, current knowledge of its mechanisms is incomplete. In this study, integrated spleen and thymus untargeted metabolomics were used to analyze the changes in endogenous metabolites underlying the immunosuppressive activity of TWD on psoriasis animal models induced by imiquimod. The results suggested that TWD treatment markedly attenuated imiquimod-induced psoriasis and showed significant immunosuppressive activity as evidenced by decreased elevation index of spleen and thymus. Meanwhile, TWD significantly reversed the elevation of immunoregulatory factors, including IL-10, IL-17, IL-22 and IL-23. Multivariate trajectory analysis revealed that TWD treatment could restore the psoriasis-disturbed spleen and thymus metabolite profiles towards the normal metabolic status. A total of 25 and 27 metabolites associated with the immunomodulatory effects for which levels changed markedly upon treatment have been identified in spleen and thymus, respectively. These differential metabolites were mainly involved in amino acid metabolism, nucleotide metabolism, fatty acid metabolism and lipid metabolism. Our investigation provided a holistic view of TWD for intervention in psoriasis through immunoregulation and provided further scientific information in vivo about a clinical value of TWD for psoriasis.  相似文献   
104.
Lin  Yingzi  Zhu  Yang  Li  Ang  Wu  Tianmo  Song  Yingji 《Research on Chemical Intermediates》2020,46(2):1405-1424
Research on Chemical Intermediates - In this study, biomorphic WO3-Cx nanomaterial was successfully prepared with rice hull as biological templates. The structure and morphology of the nanomaterial...  相似文献   
105.
Chen  Chao-Yue  Qiao  Yu  Zhang  Lei  Wang  Xin  Yang  Ting-Hai 《Research on Chemical Intermediates》2020,46(9):4079-4089
Research on Chemical Intermediates - When synthesizing cyclohexane-annulated pyrazolones from a cyclohexonedicarboxylate derivative with phenylhydrazine under the catalysis of sulfuric acid in the...  相似文献   
106.
Zinc–cobalt double-metal sulfides (ZCS) as Faradic electrode materials with high energy density have great potential for supercapacitors, but their poor transfer efficiency for electrons and ions hinders their electrochemical response. Herein, ZnCo2(CO3)1.5(OH)3@ZCS microflower hybrid arrays consisting of thin nanolayer petals were anchored on three-dimensional graphene (ZnCo2(CO3)1.5(OH)3@ZCS/3DG) by a simple hydrothermal method and additional ion-exchange process. A ZnCo2(CO3)1.5(OH)3@ZCS/3DG electrode delivered high capacitance (2228 F g−1 at 1 A g−1) and long cycling life (85.7 % retention after 17 000 cycles), which are ascribed to the multicomponent structural design. The 3DG conductive substrate improves the electron-transfer dynamics of the electrode material. Meanwhile, the microflowers consisting of thin nanolayer petals could not only provide many active sites for ions to improve the capacitance, but also alleviate the volume expansion to ensure the structural stability. Furthermore, an all-solid-state asymmetric supercapacitor based on a ZnCo2(CO3)1.5(OH)3@ZCS/3DG electrode achieved a high energy density of 27 W h kg−1 at 528.3 W kg−1 and exhibits exceptional cyclic stability for 23 000 cycles. Its ability to light a blue LED for 9 min verified the feasibility of its application for energy storage devices.  相似文献   
107.
Recently, nonmetal doping has exhibited its great potential for boosting the hydrogen evolution reaction (HER) of transition-metal (TM)-based electrocatalysts. To this end, this work overviews the recent achievements made on the design and development of the nonmetal-doped TM-based electrocatalysts and their performance for the HER. It is also shown that by rationally doping nonmetal elements, the electronic structures of TM-based electrocatalysts can be effectively tuned and in turn the Gibbs free energy of the TM for adsorption of H* intermediates (ΔGH*) optimized, consequently enhancing the intrinsic activity of TM-based electrocatalysts. Notably, we highlight that concurrently doping two nonmetal elements can continuously and precisely regulate the electronic structures of the TM, thereby maximizing the activity for HER. Moreover, nonmetal doping also accounts for enhancing the physical properties of the TM (i.e. surface area). Therefore, nonmetal doping is a robust strategy for simultaneous regulation of the chemical and physical features of the TM.  相似文献   
108.
The successful commercialization of promising silicon-based anode materials has been hampered by their poor cycling stability caused by the huge volume change. Integration of the carbon matrix with silicon-based (C/Si-based) anode materials has been demonstrated to be a powerful solution to achieve satisfactory electrochemical performance. This minireview aims to outline recent developments on C/Si-based composites, with the emphasis on the importance of carbon distribution at multiple scales. In addition, the forms of the carbon framework (carbon sources and doping of heteroatoms) have been summarized. Particularly, a novel C/Si-based hybrid with carbon distributed at the atomic scale has been highlighted.  相似文献   
109.
An efficient pincer-ligand-based cobalt-complex-catalyzed allene hydroboration affording Z-allylic boronates is described. The reaction demonstrates an excellent regio- as well as Z-stereoselectivity and a wide substrate scope that tolerates many functional groups. Based on solvent-assisted electrospray ionization mass spectrometry (SAESI-MS) studies, a rationale for the cobalt-catalyzed hydroboration involving the highly selective insertion of an allene into the Co−H bond to form Z-allylic cobalt intermediates is proposed.  相似文献   
110.
We report the first example of 2D covalent organic framework nanosheets (Redox-COF1) for the selective reduction and in situ loading of valence-variable, redox-sensitive and long-lived radionuclides (abbreviated as VRL nuclides). Compared with sorbents based on chemical adsorption and physical adsorption, the redox adsorption mechanism of Redox-COF1 can effectively reduce the impact of functional group protonation under the usual high-acidity conditions in chemisorption, and raise the adsorption efficiency from the monotonous capture by pores in physisorption. The adsorption selectivity for UO22+ reaches up to unprecedented ca. 97 % at pH 3, more than for any analogous adsorbing material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号